Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/nonlinear-control-systems-ii/isidori/descriptif_1869450
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1869450

Nonlinear Control Systems II, Softcover reprint of the original 1st ed. 1999 Communications and Control Engineering Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Nonlinear Control Systems II

This eagerly awaited follow-up to Nonlinear Control Systems incorporates recent advances in the design of feedback laws, for the purpose of globally stabilizing nonlinear systems via state or output feedback. The author is one of the most prominent researchers in the field.

10. Stability of Interconnected Nonlinear Systems.- 10.1 Preliminaries.- 10.2 Asymptotic Stability and Small Perturbations.- 10.3 Asymptotic Stability of Cascade-Connected Systems.- 10.4 Input-to-State Stability.- 10.5 Input-to-State Stability of Cascade-Connected Systems.- 10.6 The “Small-Gain” Theorem for Input-to-State Stable Systems.- 10.7 Dissipative Systems.- 10.8 Stability of Interconnected Dissipative Systems.- 10.9 Dissipative Linear Systems.- 11. Feedback Design for Robust Global Stability.- 11.1 Preliminaries.- 11.2 Stabilization via Partial State Feedback: a Special Case.- 11.3 Stabilization via Output Feedback: a Special Case.- 11.4 Stabilization of Systems in Lower Triangular Form.- 11.5 Design for Multi-Input Systems.- 12. Feedback Design for Robust Semiglobal Stability.- 12.1 Achieving Semiglobal and Practical Stability.- 12.2 Semiglobal Stabilization via Partial State Feedback.- 12.3 A Proof of Theorem 9.6.2.- 12.4 Stabilization of Minimum-Phase Systems in Lower-Triangular Form.- 12.5 Stabilization via Output Feedback Without a Separation Principle.- 12.6 Stabilization via Output Feedback of Non-Minimum-Phase Systems.- 12.7 Examples.- 13. Disturbance Attenuation.- 13.1 Robust Stability via Disturbance Attenuation.- 13.2 The Case of Linear Systems.- 13.3 Disturbance Attenuation.- 13.4 Almost Disturbance Decoupling.- 13.5 An Estimate of the Minimal Level of Disturbance Attenuation.- 13.6L2-gain Design for Linear Systems.- 13.7 GlobalL2-gain Design for a Class of Nonlinear Systems.- 14. Stabilization Using Small Inputs.- 14.1 Achieving Global Stability via Small Inputs.- 14.2 Stabilization of Systems in Upper Triangular Form.- 14.3 Stabilization Using Saturation Functions.- 14.4 Applications and Extensions.- Bibliographical Notes.- References.

Alberto Isidori was born in Rapallo, Italy. He graduated in electrical engineering from the University of Rome in 1965. In 1969 he obtained a degree equivalent to a doctorate in automatic control from the University of Rome.

Since 1975, he has been Professor of Automatic Control at the University of Rome "La Sapienza". Since 1989, he has also held a position of rofessor (on a half-time basis) at the Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri. He has held visiting positions at several academic institutions, including the University of Illinois (Urbana, Il.), the University of California (Berkeley, Ca.) and the ETH (Zurich, Switzerland).

His research interests are primarily focused on mathematical control theory and control engineering.

 

 

In 1979, Alberto Isidori initiated a research program aimed at the extension of so-called "geometric theory" of multivariable linear systems, pioneered in the early 1970s by various authors,to linear systems. Linear algebra and linear geometric methods were replaced in nonlinear systems by the methods of differential geometry, whose usefulness in the study of controllability, observability, and minimality of nonlinear systems had been demonstrated in the early 70s. The main intuition of Isidori was to use differential geometric methods in the synthesis of feedback laws for nonlinear systems, more or less in the same way as linear geometric methods were used in the synthesis of feedback laws for linear systems. The result of this seminal work was the development of systematic methods addressing outstanding design problems like feedback linearization, noninteracting control, disturbance decoupling, and model matching.

From 1985 to 1990 Isidori's research concentrated on the development of the "nonlinear analogue" of the notion of the "zero" of a transfer function. Taking as a point of departure the "geometric" interpretation of this notio

Eagerly awaited follow-up to Nonlinear Control Systems

New topics and recent results

Prof. Isidori is one of the most prominent researchers in the field being an internationally renowned and respected academic

Date de parution :

Ouvrage de 293 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 232,09 €

Ajouter au panier