Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/neurotransmitter-actions-in-the-vertebrate-nervous-system/rogawski/descriptif_1232949
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1232949

Neurotransmitter Actions in the Vertebrate Nervous System, Softcover reprint of the original 1st ed. 1985

Langue : Anglais

Coordonnateur : Rogawski Michael

Couverture de l’ouvrage Neurotransmitter Actions in the Vertebrate Nervous System
Intercellular communication via bioactive substances occurs in virtually all multicellular systems. Chemical neurotransmission in the vertebrate nervous system represents a form of signaling of this type. The biology of chemical neurotransmission is complex, involving transmitter synthesis, transport, and release by the presynaptic neuron; signal generation in the target tissue; and mechanisms for termination of the response. The focus of this book is on one aspect of this scheme: the diverse electrophysiological effects induced by different neurotransmitters on targets cells. In recent years, astonishing progress has been made in elucidating the specific physiological signals mediated by neurotransmitters in the verte­ brate nervous system, yet, in our view, this has not been adequately recog­ nized, perhaps because the new concepts have yet to filter into neuroscience textbooks. Nevertheless, the principles of neurotransmitter action are critical to advances in many areas of neuroscience, including molecular neurobiol­ ogy, neurochemistry, neuropharmacology, physiological psychology, and clinical neuroscience. It was the need for a sourcebook that prompted us to engage a group of neurophysiologists to prepare the chapters in this volume. However, there was an additional reason for this book: more and more it seemed that the field, if not yet having reached maturity, at least was ap­ proaching adolescence, with strengths in some areas and healthy conflicts in others. At this stage of development a textbook can help to define a field, clarify problems to be resolved, and identify areas for future investigation.
I. Amino Acids.- 1. GABA: Presynaptic Actions.- 1. Introduction.- 2. Presynaptic Inhibition.- 3. Primary Afferent Depolarization.- 4. The Eccles’ Hypothesis.- 5. Mechanisms of PAD.- 5.1. K+ and PAD.- 5.2. Two Components to PAD.- 6. Distribution of GABA in the Spinal Cord.- 7. GABA and Afferent Terminals.- 7.1. Afferent Terminals in the Cat Spinal Cord.- 7.2. The Isolated Spinal Cord.- 7.3. The Dorsal Root Ganglion.- 7.4. Sensory Neurons in Culture.- 7.5. The Dorsal Column Nuclei.- 7.6. Characteristics of the GABA Receptor on Afferent Neurons.- 8. GABA Metabolism and PAD.- 9. GABA Desensitization.- 10. GABA and Other Presynaptic Terminals.- 10.1. Sympathetic Ganglia.- 10.2. Olfactory Cortex.- 11. Autoreceptors.- 12. Summary.- References.- 2. GABA and Glycine: Postsynaptic Actions.- 1. Background.- 1.1. GABA in the Invertebrate Nervous System.- 1.2. GABA in the Vertebrate CNS.- 1.3. Glycine in the Vertebrate CNS.- 1.4. GABA Receptor Complexes.- 2. Physiological Actions in the Central Nervous System.- 2.1. Release Mechanisms.- 2.2. Membrane Mechanisms.- 2.3. Termination of Transmitter Action.- 2.4. Use-Dependence of IPSPs.- 3. Modes of Inhibitory Action.- 3.1. Prevention of Impulse Generation.- 3.2. Dendritic Inhibition.- 3.3. Dendrodendritic Inhibition.- 4. Physiological Actions of GABA in Peripheral Systems.- 4.1. Sympathetic Ganglia.- 4.2. Parasympathetic Ganglia.- 4.3. Myenteric Plexus.- 5. Conclusions and Functional Considerations.- References.- 3. GABA and Glycine: Ion Channel Mechanisms.- 1. Introduction.- 2. Electropharmacology of Cl- Conductance Mechanisms.- 2.1. Current-Clamp Observations.- 2.2. Voltage-Clamp Observations.- 3. Synaptically Activated Cl- Conductance Mechanisms.- 3.1. Long-Lasting Synaptic Conductance in Cultured Hippocampal Neurons.- 3.2. Pharmacological Modulation of IPSCs in Cultured Hippocampal Neurons.- 4. Conclusions.- References.- 4. Glutamate.- 1. Introduction.- 1.1. Overview and Synaptic Pathways.- 1.2. Distribution and Release.- 2. Physiological Actions of Glutamate.- 2.1. Invertebrate Preparations.- 2.2. The Lamprey, a Lower Vertebrate.- 2.3. Amphibia and Mammals.- 3. Glutamate Agonists.- 4. Excitatory Amino Acid Receptors.- 5. Implications for Clinical Medicine and Neurotoxicology.- 6. Conclusion.- References.- 5. Excitatory Amino Acids: Membrane Physiology.- 1. Introduction.- 1.1. Receptor Pharmacology.- 1.2. Physiology.- 2. Intracellular Recording, Voltage Clamp and Patch Clamp.- 2.1. N-Methyl-D-aspartic Acid (NMDA).- 2.2. Glutamate and Aspartate.- 3. Excitatory Synaptic Transmission.- 3.1. The 1a EPSP.- 3.2. Excitatory Transmission in the Hippocampus.- 3.3. Excitatory Transmission in Spinal Cord Cultures.- 4. Summary and Commentary.- References.- II. Acetylcholine.- 6. Acetylcholine.- 1. Introduction.- 1.1. Overview.- 1.2. Acetylcholine Release.- 1.3. Inactivation of Acetylcholine.- 1.4. Cholinergic Receptors.- 1.5. Central Cholinergic Pathways.- 1.6. Functional Correlates of Identifiable Cholinergic Pathways.- 2. Extracellular Studies in the Central Nervous System.- 2.1. Nicotinic Excitation.- 2.2. Muscarinic Excitation.- 2.3. Muscarinic Inhibition.- 2.4. Synaptic Actions of Ascending Cholinergic Projections and the Possible Role of Acetylcholine-Mediated Disinhibition.- 2.5. Multiple Responses of Individual Neurons and Complexities to the Receptor Classification Scheme.- 3. Ionic Events Underlying Muscarinic Excitation of Central Neurons.- 3.1. Intracellular Studies in Vivo and in the Hippocampal Slice.- 3.2. Acetylcholine and Anomalous Rectification.- 3.3. Studies on the M Current Under Voltage Clamp.- 3.4. Muscarinic Inhibition of the Afterhyperpolarization.- 3.5. The Initial Inhibition Evoked by Acetylcholine.- 3.6. Disinhibitory Effects of Acetylcholine.- 3.7. Cholinergic Synaptic Actions in the CNS.- 4. Actions of Acetylcholine in the Periphery.- 4.1. Nicotinic Excitation at the Neuromuscular Junction.- 4.2. Cholinergic Synaptic Actions in Autonomic Ganglia.- 5. Intracellular Events Resulting from Muscarinic Receptor Stimulation.- 6. Conclusion.- References.- III. Biogenic Amines.- 7. Serotonin.- 1. Historical Perspective and Overview.- 1.1. Distribution of Serotonergic Neurons.- 1.2. Serotonin Receptors.- 2. Central Serotonergic Neurons.- 3. Postsynaptic Actions of Serotonin in the Central Nervous System.- 3.1. Hippocampal Pyramidal Neurons.- 3.2. Neostriatal Neurons.- 3.3. Facial Motoneurons.- 3.4. Spinal Cord.- 4. Postsynaptic Actions of Serotonin in the Peripheral Nervous System.- 4.1. Myenteric Plexus Neurons.- 4.2. Dorsal Root Ganglion Neurons.- 4.3. Autonomic Ganglia Neurons.- 5. Summary and Conclusions.- References.- 8. Norepinephrine.- 1. Introduction.- 1.1. Historical Overview.- 1.2. Distribution of Norepinephrine Neurons.- 1.3. Adrenoceptors.- 2. Responses Mediated by ?2-Adrenoceptors.- 2.1. Sympathetic Ganglia.- 2.2. Sensory Ganglia.- 2.3. Myenteric Plexus.- 2.4. Locus Coeruleus.- 2.5. Preganglionic Sympathetic Neurons.- 2.6. Substantia Gelatinosa.- 3. Responses Mediated by ?1-Adrenoceptors.- 3.1. Facial and Spinal Motoneurons.- 3.2. Lateral Geniculate Nucleus.- 3.3. Neocortex.- 3.4. Dorsal Raphe Nucleus.- 3.5. Hypothalamus.- 4. Responses Mediated by ?-Adrenoceptors.- 4.1. Cerebellum.- 4.2. Hippocampus.- 5. Responses Mediated by Interneurons.- 5.1. Olfactory Bulb.- 5.2. Lateral Geniculate Nucleus.- 6. Conclusion.- References.- 9. Dopamine.- 1. Introduction.- 1.1. Historical Perspective.- 1.2. Distribution of Dopamine Neurons and Fibers.- 1.3. Dopamine Receptors.- 2. Central Dopamine Neuron Electrophysiology.- 2.1. Electrophysiological Identification.- 2.2. Morphology.- 2.3. Electrophysiological Characteristics.- 2.4. Endogenous Pacemaker Activity.- 2.5. Firing Pattern.- 2.6. Electrical Coupling.- 2.7. Autoreceptor Stimulation.- 2.8. Dopamine Neuron Explants.- 3. Postsynaptic Actions of Dopamine in the Central Nervous System.- 3.1. Striatum.- 3.2. Frontal Cortex.- 3.3. Hippocampus.- 3.4. Retina.- 3.5. Interactions with Other Transmitters.- 4. Postsynaptic Actions of Dopamine in the Peripheral Nervous System.- 4.1. Superior Cervical Ganglion.- 4.2. Carotid Body.- 4.3. Dorsal Root Ganglion.- 5. Conclusion.- References.- 10. Histamine.- 1. Introduction.- 1.1. Historical Perspective.- 1.2. Regional and Subcellular Distribution.- 1.3. Pathways in Brain.- 1.4. Metabolism and Release.- 1.5. Histamine Receptors.- 1.6. Histamine Neurons in Invertebrates.- 2. Central Nervous System: Studies in Vivo.- 2.1. Spinal Cord.- 2.2. Brainstem.- 2.3. Hypothalamus.- 2.4. Cortex.- 3. Central Nervous System: Studies in Vitro.- 3.1. Hypothalamus.- 3.2. Hippocampus.- 4. Sympathetic Ganglia.- 5. Conclusion.- References.- IV. Neuropeptides.- 11. Opioid Peptides: Central Nervous System.- 1. Introduction.- 1.1. Historical Perspective and Overview.- 1.2. Opioid Peptides.- 1.3. Opioid Receptors.- 2. Cellular Actions of Opioids.- 2.1. Dorsal Root Ganglia.- 2.2. Locus Coeruleus.- 2.3. Hippocampus.- 2.4. Spinal Cord.- 3. Summary and Functional Considerations.- References.- 12. Opioid Peptides: Peripheral Nervous System.- 1. Introduction.- 1.1. Historical Perspective and Overview.- 1.2. Distribution of Enkephalin-Containing Neurons.- 1.3. Opioid Receptors.- 2. Autonomic Ganglia.- 2.1. Effects on Cholinergic Excitation.- 2.2. Effects on Synaptic Inhibition.- 2.3. Effects on Noncholinergic Slow Excitation.- 2.4. Neurally Evoked Enkephalinergic Inhibition.- 3. Autonomic Neuroeffector Junctions and the Enteric Nervous System.- 3.1. Effects on Adrenergic and Cholinergic Transmission.- 3.2. Effects on Nonadrenergic, Noncholinergic Transmission.- 3.3. Direct Effects on Myenteric Neurons.- 4. Conclusions.- References.- 13. Substance P.- 1. Introduction.- 1.1. Historical Perspective.- 1.2. Distribution of Substance P Neurons and Fibers.- 1.3. Substance P Receptors and Antagonists.- 2. Action in the Central Nervous System.- 2.1. Spinal Motoneurons and Cuneate Neurons.- 2.2. Mouse Spinal Cord Neurons in Culture.- 2.3. Dorsal Horn Neurons.- 2.4. Hypothalamic Neurons.- 3. Action in the Peripheral Nervous System.- 3.1. Myenteric Neurons.- 3.2. Inferior Mesenteric Ganglion Cells.- 3.3. Bullfrog Sympathetic Neurons.- 3.4. Actions on Nonneuronal Tissues.- 4. Interaction with Other Transmitters.- 5. Substance P as a Sensory Transmitter.- 6. Conclusion.- References.- 14. Somatostatin.- 1. Introduction.- 1.1. Overview.- 1.2. Distribution of Somatostatin in Nervous System.- 1.3. Neurochemistry of Somatostatin.- 1.4. Nonneuronal Actions of Somatostatin.- 2. Actions in the Peripheral Nervous System.- 2.1. Dorsal Root Ganglia.- 2.2. Autonomic Neurons.- 2.3. Myenteric Neurons.- 3. Actions in the Central Nervous System.- 3.1. Extracellular Studies in Vivo.- 3.2. Studies in Hippocampal Slice.- 3.3. Cortical Neurons in Culture.- 3.4. Spinal Neurons in Culture.- 3.5. Interactions with Other Transmitter Systems.- 3.6. Metabolic Actions in Nervous Tissue.- 4. Conclusions and Functional Significance.- References.- 15. Oxytocin and Vasopressin.- 1. Introduction.- 1.1. Historical Perspective and Overview.- 1.2. The Neurohypophysial Peptides.- 1.3. Vasopressin and Oxytocin Receptors.- 1.4. Hypothalamo-Extrahypophysial Systems.- 2. Cellular Actions in the Central Nervous System.- 2.1. Hippocampus.- 2.2. Dorsal Motor Nucleus of the Vagus Nerve.- 2.3. Spinal Cord.- 2.4. Supraoptic Magnocellular Neurons.- 3. Cellular Actions of Vasopressin and Oxytocin in Invertebrates.- 4. Conclusion and Functional Considerations.- References.- 16. Luteinizing Hormone-Releasing Hormone.- 1. Introduction.- 1.1. Overview.- 1.2. LHRH-like Peptide.- 1.3. Distribution of LHRH-like Peptide in the Central Nervous System.- 1.4. Receptors for LHRH.- 2. LHRH-like Peptide in Frog Sympathetic Ganglia: The Late Slow EPSP.- 2.1. The Late Slow EPSP.- 2.2. Presence and Distribution of LHRH-like Peptides.- 2.3. Release.- 2.4. Cellular Actions of LHRH: Mimicry of the Late Slow EPSP.- 2.5. Pharmacological Antagonism.- 2.6. The Identity of the LHRH-like Peptide.- 2.7. Removal of the LHRH-like Peptide after Release.- 2.8. The Ionic Basis of the Late Slow EPSP.- 3. Features of Peptidergic Transmission in Frog Sympathetic Ganglia.- 3.1. Coexistence and Corelease of LHRH-like Peptide and Acetylcholine.- 3.2. Diffusion of LHRH-like Peptide.- 4. Actions of LHRH in the Central Nervous System.- 5. Summary.- References.- V. Adenosine and ATP.- 17. Adenosine and ATP.- 1. Introduction.- 1.1. Historical Perspective and Overview.- 1.2. Defining a Neurotransmitter Role for Purines.- 1.3. Defining Receptors for Purines.- 1.4. Metabolism of Purines.- 2. Physiological Actions of Adenosine.- 2.1. Neuronal Electrophysiology.- 2.2. Cardiovascular Effects.- 3. Physiological Actions of ATP.- 3.1. Neuronal Electrophysiology.- 3.2. Smooth Muscle.- 4. Summary.- References.

Date de parution :

Ouvrage de 511 p.

17.8x25.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 52,74 €

Ajouter au panier

Thème de Neurotransmitter Actions in the Vertebrate Nervous System :

Ces ouvrages sont susceptibles de vous intéresser