Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/molecular-sensors-and-nanodevices/zhang/descriptif_3569228
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3569228

Molecular Sensors and Nanodevices Principles, Designs and Applications in Biomedical Engineering Micro and Nano Technologies Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Molecular Sensors and Nanodevices
With applications ranging from medical diagnostics to environmental monitoring, molecular sensors (also known as biosensors, chemical sensors, or chemosensors), along with emerging nanotechnologies offer not only valuable tools but also unlimited possibilities for engineers and scientists to explore the world. New generation of functional microsystems can be designed to provide a variety of small scale sensing, imaging and manipulation techniques to the fundamental building blocks of materials. This book provides comprehensive coverage of the current and emerging technologies of molecular sensing, explaining the principles of molecular sensor design and assessing the sensor types currently available. Having explained the basic sensor structures and sensing principles, the authors proceed to explain the role of nano/micro fabrication techniques in molecular sensors, including MEMS, BioMEMS, MicroTAS among others. The miniaturization of versatile molecular sensors opens up a new design paradigm and a range of novel biotechnologies, which is illustrated through case studies of groundbreaking applications in the life sciences and elsewhere. As well as the techniques and devices themselves, the authors also cover the critical issues of implantability, biocompatibility and the regulatory framework. The book is aimed at a broad audience of engineering professionals, life scientists and students working in the multidisciplinary area of biomedical engineering. It explains essential principles of electrical, chemical, optical and mechanical engineering as well as biomedical science, intended for readers with a variety of scientific backgrounds. In addition, it will be valuable for medical professionals and researchers. An online tutorial developed by the authors provides learning reinforcement for students and professionals alike.

1. Introduction to Molecular Sensors Introduction2. Fundamentals of Nano/Microfabrication and Scale Effect 3. Microfluidics basics and total analytical systems4. Electrical transducers: electrochemical sensors and FET-based molecular sensors5. Optical transducers: optical molecular sensors and optical spectroscopy6. Mechanical transducers: cantilevers, acoustic wave sensors and thermal sensors 7. Implantable sensors

Engineers, life scientists and students working in the multidisciplinary area of biomedical device engineering; medical professionals and researchers.

Xiaojing(John) Zhang is an Associate Professor in the Department of Biomedical Engineering at the University of Texas of Austin (UT Austin). He received his Ph.D. from Stanford University, California, and was a Research Scientist at Massachusetts Institute of Technology (MIT) before joining the faculty at UT Austin.

Dr. Zhang’s research focuses on integrating Micro-electro-mechanical Systems (MEMS), nano-materials, micro-imaging and biosensors to provide innovative solutions to critical healthcare issues. Dr. Zhang has actively engaged in teaching new concepts and methods in these emerging biomedical engineering frontiers and has demonstrated innovation and excellence in engineering education. The materials presented in this textbook are based on his lecture notes while teaching a popular course on molecular sensors and nanodevices at UT Austin for the past 8 years.

He has a track record for developing both core and emerging engineering curriculum along with developing well-funded research programs with fellow students. Among his numerous awards, Dr. Zhang received the Wallace H. Coulter Foundation Early Career Award in Biomedical Engineering, NSF CAREER award, DARPA Young Faculty Award among many others. To recognize his accomplishment in research and education, Dr. Zhang was selected to attend the prestigious US National Academy of Engineering, Frontiers of Engineering (NAE FOE) program in 2011, the NAE Frontiers of Engineering Education (NAE FOEE) program in 2012, and subsequently China-America Frontiers of Engineering Symposium (CAFOE) program in 2013.

As an active member in his professional community, Dr. Zhang has served on numerous international conference organizing committees and editorial boards. He is an editor for ASME/IEEE Journal of Microelectromechanical Systems (JMEMS) and an associate editor Biomedical Microdevices.
Kazunori Hoshino received his PhD degree in mechanical engineering from the University of Tokyo, Tokyo, Japan, in

  • Reviews of state-of-the-art molecular sensors and nanotechnologies
  • Explains principles of sensors and fundamental theories with homework problems at the end of each chapter to facilitate learning
  • Demystifies the vertical integration from nanomaterials to devices design
  • Covers practical applications the recent progress in state-of-the-art sensor technologies
  • Includes case studies of important commercial products
  • Covers the critical issues of implantability, biocompatibility and the regulatory framework

Date de parution :

Ouvrage de 512 p.

19x23.3 cm

Ancienne édition

Accéder à la nouvelle édition.

Date de parution :

Ouvrage de 512 p.

19x23.3 cm

Ancienne édition

Accéder à la nouvelle édition.