Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/fundamentals-mechanics-of-fluids-4th-ed/currie/descriptif_2649098
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2649098

Fundamental Mechanics of Fluids (4th Ed.)

Langue : Anglais

Auteur :

Couverture de l’ouvrage Fundamental Mechanics of Fluids

Fundamental Mechanics of Fluids, Fourth Edition addresses the need for an introductory text that focuses on the basics of fluid mechanics?before concentrating on specialized areas such as ideal-fluid flow and boundary-layer theory. Filling that void for both students and professionals working in different branches of engineering, this versatile instructional resource comprises five flexible, self-contained sections:

  • Governing Equations deals with the derivation of the basic conservation laws, flow kinematics, and some basic theorems of fluid mechanics.
  • Ideal-Fluid Flow covers two- and three-dimensional potential flows and surface waves.
  • Viscous Flows of Incompressible Fluids discusses exact solutions, low-Reynolds-number approximations, boundary-layer theory, and buoyancy-driven flows.
  • Compressible Flow of Inviscid Fluids addresses shockwaves as well as one- and multidimensional flows.
  • Methods of Mathematical Analysis summarizes some commonly used analysis techniques. Additional appendices offer a synopsis of vectors, tensors, Fourier series, thermodynamics, and the governing equations in the common coordinate systems.

The book identifies the phenomena associated with the various properties of compressible, viscous fluids in unsteady, three-dimensional flow situations. It provides techniques for solving specific types of fluid-flow problems, and it covers the derivation of the basic equations governing the laminar flow of Newtonian fluids, first assessing general situations and then shifting focus to more specific scenarios.

The author illustrates the process of finding solutions to the governing equations. In the process, he reveals both the mathematical methodology and physical phenomena involved in each category of flow situation, which include ideal, viscous, and compressible fluids. This categorization enables a clear explanation of the different solution methods and the basis for the various physical consequences of fluid properties and flow characteristics. Armed with this new understanding, readers can then apply the appropriate equation results to deal with the particular circumstances of their own work.

Part I: Governing Equations

Basic Conservation Laws. Flow Kinematics. Special Forms of the Governing Equations.

Part II: Ideal-Fluid Flow

Two-Dimensional Potential Flows. Three-Dimensional Potential Flows. Surface Waves.

Part III: Viscous Flows of Incompressible Fluids

Exact Solutions. Low Reynolds Number Solutions. Boundary Layers. Buoyancy-Driven Flows.

Part IV: Compressible Flow of Inviscid Fluids

Shock Waves. One-Dimensional Flows. Multidimensional Flows.

Part V: Methods of Mathematical Analysis

Some Useful Methods of Analysis

Appendices.

Upper-level undergraduates and graduate students in Fluid Mechanics courses

Iain G. Currie is a Professor Emeritus in the Department of Mechanical and Industrial Engineering at University of Toronto, Canada. He holds a Bachelor’s degree in Mechanical Engineering from the University of Strathclyde, a Master’s degree from the University of British Columbia, and Ph.D. from the California Institute of Technology. He has taught fluid mechanics at the undergraduate and graduate levels for many years. His research involves fluid structure interactions, and he has become involved in studying low Reynolds number flows of both Newtonian and non-Newtonian fluids.