Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/enzymes-of-biological-membranes/martonosi/descriptif_1232485
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1232485

The Enzymes of Biological Membranes, Softcover reprint of the original 1st ed. 1985 Volume 1 Membrane Structure and Dynamics

Langue : Anglais

Coordonnateur : Martonosi A.N.

Couverture de l’ouvrage The Enzymes of Biological Membranes
In the first edition of The Enzymes of Biological Membranes, published in four volumes in 1976, we collected the mass of widely scattered information on membrane-linked enzymes and metabolic processes up to about 1975. This was a period of transition from the romantic phase of membrane biochemistry, preoccupied with conceptual developments and the general properties of membranes, to an era of mounting interest in the specific properties of membrane-linked enzymes analyzed from the viewpoints of modem enzymology. The level of sophistication in various areas of membrane research varied widely; the structures of cytochrome c and cytochrome b5 were known to atomic detail, while the majority of membrane-linked enzymes had not even been isolated. In the intervening eight years our knowledge of membrane-linked enzymes ex­ panded beyond the wildest expectations. The purpose of the second edition of The Enzymes of Biological Membranes is to record these developments. The first volume describes the physical and chemical techniques used in the analysis of the structure and dynamics of biological membranes. In the second volume the enzymes and met­ abolic systems that participate in the biosynthesis of cell and membrane components are discussed. The third and fourth volumes review recent developments in active transport, oxidative phosphorylation and photosynthesis.
of Volume 1.- 1. Electron Microscopy of Biological Membranes.- I. Introduction.- II. Methods Used for Studying Biological Membranes in the Electron Microscope.- A. Sectioning.- B. Negative Staining.- C. Freeze-Etching and Freeze Fracturing.- D. Split Membrane Technique.- E. Immunoelectron Microscopy.- F. Colloidal Gold Marker.- G. Cryoelectron Microscopy.- H. Image Processing and Three-Dimensional Structure Determination.- References.- 2. Associations of Cytoskeletal Proteins with Plasma Membranes.- I. Introduction.- II. The Components of the Cytoskeleton.- A. Actin.- B. Microtubules.- C. Intermediate Filaments.- D. The Role of ?-Actinin.- III. Cytoskeletal Functions.- IV. The Erythrocyte Membrane Skeleton: A Completely Membrane Associated Cytoskeleton.- A. Composition of the Erythrocyte Membrane Skeleton.- B. Spectrin.- C. Actin.- D. Polypeptides 4.1 and 4.9.- E. Ankyrin.- F. Associations between Spectrin, Actin and Band 4.1.- G. Ultrastructure of the Membrane Skeleton.- V. Cytoskeletal Involvement in Cell—Substratum Associations.- A. Focal Adhesions.- B. The Role of ?-Actinin and Vinculin in Focal Adhesions.- C. Association of Vinculin with F-Actin.- D. Effects of Cell Transformation on Focal Adhesions.- E. The Relationship of Focal Adhesions with the Extracellular Matrix.- F. The Formation of Focal Adhesions.- G. The Function of Focal Adhesions.- VI. Cytoskeletal—Membrane Interactions in Microvilli of the Intestinal Brush Border.- VII. Membrane-Associated Cytoskeletal Elements and the Control of Cell Surface Receptor Dynamics.- A. Capping.- B. Endocytosis.- C. Cell Surface Receptor Topography and Mobility.- VIII. Summary.- References.- 3. Cell Coupling.- I. Introduction.- II. Which Molecules Diffuse from Cell to Cell.- A. Electrical Coupling.- B. Cell-to-Cell Diffusion of Ions.- C. Molecular Probes of Cell-to-Cell Coupling.- D. Metabolic Coupling.- E. Variability in Channel Permselectivity.- F. Asymmetry of Channel Permeability.- III. How Molecules Diffuse for Cell-to-Cell.- A. Gap Junction Architecture.- B. Structure of Cell-to-Cell Channels.- C. What Keeps Gap Junction Particles Aggregated.- D. Gap Junction Composition.- IV. How Cell-to-Cell Diffusion of Molecules is Regulated.- A. Uncoupling Agents.- B. Is Uncoupling a Graded Phenomenon?.- C. How to Enhance Coupling or Inhibit Uncoupling.- D. Change in Junction Structure with Uncoupling.- E. Hypotheses on Channel Closing Mechanisms.- F. Is Calmodulin Involved in the Regulation of Cell-to-Cell Coupling?.- References.- 4. Lipid Polymorphism and Membrane function.- I. Introduction.- II. Membrane Lipid Polymorphism: Technical Aspects.- III. Phase Preferences of Membrane Lipids.- IV. The Hexagonal HII Phase.- V. Modulation of Membrane Lipid Polymorphism.- A. One Lipid Systems.- B. Mixed Lipid Systems.- C. Lipid-Protein and Lipid-Peptide Interactions.- VI. “Isotropic” Lipid Structures and Lipid Particles.- VII. The Shape Concept, a Rationale for Lipid Polymorphism.- VIII. Functional Aspects of Lipid Polymorphism.- A. Fusion.- B. Transport.- C. Protein Insertion and Transport.- IX. Lipid Structure in Biological Membranes.- A. Erythrocyte Membrane.- B. Endoplasmic Reticulum (Microsomes).- C. The Inner Mitochondrial Membrane.- D. Bacterial Membranes.- E. Rod Outer Segment (ROS).- F. Chloroplast and Prolamellar Body.- G. Tight Junction.- X. Concluding Remarks.- References.- 5. Intrinsic Protein-Lipid Interactions in Biomembranes.- I. Introduction.- II. Properties of Biomembrane Components.- A. Lipids.- B. Proteins.- III. Lipid Composition and Enzyme Activity.- IV. Specificity of Protein-Lipid Interactions.- V. Distribution of Proteins in Membranes.- VI. Perturbation of Lipid Dynamics by Intrinisic Proteins.- A. NMR and EPR Spectroscopy.- B. Fluorescence Depolarization.- C. Range of the Perturbation.- VII. The Effect of Protein on Lipid Conformation.- A. Acyl Chain Region.- B. Glycerol Backbone Region.- C. Polar Region.- VIII. The Influence of Lipids on Protein Conformation.- IX. Diffusion of Membrane Components.- A. Lateral Diffusion.- B. Rotational Diffusion of Proteins.- X. Summary.- References.- 6. On the Molecular Structure of the Gramicidin Transmembrane Channel.- I. Introduction.- A. Primary Structure.- II. Planar Lipid Bilayer Transport Studies.- A. Phenomenology of Channel Transport.- B. Structural Implications of the Multiplicity of Single-Channel Conductances.- C. Structural Implications of Current/Voltage Curves.- D. Structural Deductions from Derivatives and Analogs.- III. Spectroscopic Characterization of the Lipid Incorporated Channel State.- A. Criteria for the Channel State in Lysolecithin Structures.- B. Relationship between the Lysolecithin—Gramicidin Heat Incorporated Channel State and the State of Gramicidin in Lipid Vesicles.- C. Orientation of Gramicidin Chains in the Lipid Bilayer.- D. Determining the Channel Conformation from Ion-Induced Carbonyl Carbon Chemical Shifts.- References.- 7. Conventional ESR Spectroscopy of Membrane Proteins: Recent Applications.- I. Introduction.- II. The Time Scale of Phospholipid Exchange at the Boundary of Non Aggregated Intrinsic Proteins.- III. Lipids Trapped between Protein Aggregates or Protein Oligomers.- IV. Specificity of Lipid—Protein Interactions as Investigated with Spin Labels.- A. 1st Approach: Estimation of the Relative Percentage of Immobilized Component.- B. 2nd Approach: Spin—Spin Interaction between Nitroxide Radicals.- V. Interactions between Extrinsic Proteins and Lipids.- A. Protein Penetration.- B. Protein Induction of Lateral Phospholipid Separation.- C. Protein Induction of Transverse Phospholipid Separation.- VI. Other Applications of Conventional ESR Spectroscopy to the Investigation of Membrane-Bound Enzymes.- A. Measurement of Surface Potentials and Intermembrane Potentials.- B. Conformation of Membrane-Bound Enzymes.- References.- 8. Saturation Transfer EPR Studies of Microsecond Rotational Motions in Biological Membranes.- I. Introduction.- II. ST-EPR Methodology.- A. General Principles of ST-EPR.- B. Methodology Used in Most Published Applications.- C. Recent Developments in ST-EPR Methodology.- III. Membrane-Bound Enzymes.- A. Sarcoplasmic Reticulum Calcium Transport ATPase.- B. Mitochondrial Electron Transport Chain.- C. Cytochrome P-450.- D. Glyceraldehyde-3-Phosphate Dehydrogenase.- IV. Other Membrane Proteins.- A. Rhodopsin.- B. Acetylcholine Receptor.- C. Red Blood Cell Membranes.- V. Lipid Probes.- VI. Summary.- References.- 9. Dye Probes of Cell, Organelle, and Vesicle Membrane Potentials.- I. Introduction.- II. Types of Potential Sensitive Dyes.- III. Slow Dyes.- A. Mechanism of Slow Dyes.- B. Examples of the Use of Slow Dyes.- IV. Fast Dyes.- A. General Properties.- B. Examples of the Uses of Fast Dyes.- References.- 10. Selective Covalent Modification of Membrane Components.- I. Introduction.- A. Aim and Purpose of Selective Covalent Modification.- B. Biological Membranes as Reactants in Chemical Reactions.- C. Selectivity-Promoting Factors in Membrane Labeling Studies.- II. Covalent Modification of Lipid Components.- A. Lipid Polar Head Group Modification.- B. Lipid Labeling Within the Apolar Membrane Phase.- III. Selective Covalent Modification of Protein Components.- A. Protein Modification Attained by Polar Reagent-Membrane Interaction.- B. Hydrophobic Labeling of Membrane Protein Components.- IV. Information Acquired through Selective Modification.- A. Membrane Structure: Sidedness, Asymmetry and Protein Topography.- B. Membrane Protein Function and Mechanism.- References.- 11. Calcium Ions, Enzymes, and Cell Fusion.- I. Introduction.- II. The Fusion of Myoblasts.- A. Dependence on Ca2+.- B. Some Recent Developments.- III. General Hypotheses: Ca2+, Phospholipids and Membrane Fusion.- A. Ca2+ and ATPase Activity.- B. Phase Separations of Membrane Lipids.- C. Nonbilayer Structures.- IV. Cell Fusion and Vesicle Fusion without Ca2+.- A. Cell Fusion.- B. Vesicle Fusion.- V. Concluding Comments.- References.- 12. Role of Membrane Fluidity in the Expression of Biological Functions.- I. Introduction.- II. Meaning and Measurement of Membrane Fluidity.- A. Definition of Fluidity and Viscosity of Ordinary Liquids.- B. Measurement of Membrane Fluidity through Fluorescence Anisotropy.- C. Measurement of the Conformation (Order) and Dynamics (Fluidity) of Membranes by NMR and ESR.- D. Limitations of the DPH Technique for Measuring Fluidity.- III. Factors that Influence Membrane Fluidity.- A. Lipid Composition.- B. Protein ard Boundary Lipid.- C. pH.- D. Calcium.- E. Salt Concentration.- IV. Mechanisms by which Membrane Fluidity Influences Membrane Functions.- V. Role of Membrane Fluidity in Some Membrane Functions.- A. Effects of Cholesterol.- B. Anesthetics.- C. Aging.- D. Cell Growth and Differentiation.- References.- 13. Rotational Diffusion of Membrane Proteins: Optical Methods.- I. Historical Background.- II. Physical Model for Rotational Diffusion of a Membrane Protein.- III. Physical Principles of Photoselection.- IV. Intrinsic and Extrinsic Probes.- V. Time-Resolved and Steady-State Methods.- VI. Linear Dichroism.- VII. Delayed Fluorescence.- VIII. Phosphorescence.- IX. Fluorescence Depletion.- X. Applications.- XI. Prospects.- References.

Date de parution :

Ouvrage de 474 p.

17.8x25.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 105,49 €

Ajouter au panier

Thèmes de The Enzymes of Biological Membranes :