Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/electroweak-symmetry-breaking/smetana/descriptif_3015231
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3015231

Electroweak Symmetry Breaking, Softcover reprint of the original 1st ed. 2014 By Dynamically Generated Masses of Quarks and Leptons Springer Theses Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Electroweak Symmetry Breaking

With this thesis the author contributes to the development of a non-mainstream but long-standing approach to electroweak symmetry breaking based on an analogy with superconductivity. Electroweak symmetry breaking is assumed to be caused by dynamically generated masses of typical fermions, i.e., of quarks and leptons, which in turn assumes a new dynamics between quarks and leptons. Primarily it is designed to generate fermion masses and electroweak symmetry breaking is an automatic consequence.

After the summary of the topic, the first main part of the thesis addresses the question as to whether the masses of known quarks and leptons provide sufficiently strong sources of electroweak symmetry breaking. It is demonstrated that neutrino masses subject to the seesaw mechanism are indispensable ingredients. The other two parts of the thesis are dedicated to the presentation of two particular models: The first model is based on the new strong Yukawa dynamics and serves as a platform for studying the ability to reproduce fermion masses. The second, more realistic model introduces a flavor gauge dynamics and its phenomenological consequences are studied.

Even though, in the past, this type of models has already been of some interest, following the discovery of the Standard-Model-like Higgs particle, it is regaining its relevance.

Dynamical Electroweak Symmetry Breaking.- Top-Quark and Neutrino Condensation.- Model of Strong Yukawa Dynamics.- Model of Flavor Gauge Dynamics.
Adam Smetana received his Master's degree in nuclear and sub-nuclear physics at the Charles University in Prague. He continued there with his post-graduate studies under the leadership of Prof. Jiří Hošek and received his Ph.D. degree in 2013. He started by studying the dense and cold QCD matter, but later his main focus turned to the topic of the electroweak symmetry breaking. Elaborating beyond-Standard models of the dynamical electroweak symmetry breaking has recently led him into the field of neutrino physics.
Nominated as an outstanding Ph.D. thesis by Charles University in Prague Presents a robust opinion about the current understanding of elementary particles advocating dynamical electroweak symmetry breaking Includes a valuable appendix presenting various approximate methods of solving the Schwinger–Dyson equations Includes supplementary material: sn.pub/extras

Date de parution :

Ouvrage de 172 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 172 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 105,49 €

Ajouter au panier