Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/density-ratio-estimation-in-machine-learning/sugiyama/descriptif_2589368
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2589368

Density ratio estimation in machine learning

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Density ratio estimation in machine learning
Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting and density ratio fitting, as well as describing how these can be applied to machine learning. The book provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning.
Part I. Density Ratio Approach to Machine Learning: 1. Introduction, Part II. Methods of Density Ratio Estimation: 2. Density estimation, 3. Moment matching, 4. Probabilistic classification, 5. Density fitting, 6. Density-ratio fitting, 7. Unified framework, 8. Direct density-ratio estimation with dimensionality reduction, Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling, 10. Distribution comparison, 11. Mutual information estimation, 12. Conditional probability estimation, Part IV. Theoretical Analysis of Density Ratio Estimation: 13. Parametric convergence analysis, 14. Non-parametric convergence analysis, 15. Parametric two-sample test, 16. Non-parametric numerical stability analysis, Part V. Conclusions: 17. Conclusions and future directions.
Masashi Sugiyama is an Associate Professor in the Department of Computer Science at the Tokyo Institute of Technology.
Taiji Suzuki is an Assistant Professor in the Department of Mathematical Informatics at the University of Tokyo, Japan.
Takafumi Kanamori is an Associate Professor in the Department of Computer Science and Mathematical Informatics at Nagoya University, Japan.

Date de parution :

Ouvrage de 341 p.

15.3x23 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

47,56 €

Ajouter au panier

Date de parution :

Ouvrage de 352 p.

15.2x22.8 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

Prix indicatif 130,70 €

Ajouter au panier

Thème de Density ratio estimation in machine learning :

En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.
FERMER