Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02

Url canonique :
Url courte ou permalien :

Computational Toxicology, 2013 Volume II Methods in Molecular Biology Series, Vol. 930

Langue : Anglais

Coordonnateurs : Reisfeld Brad, Mayeno Arthur N.

Couverture de l’ouvrage Computational Toxicology

Rapid advances in computer science, biology, chemistry, and other disciplines are enabling powerful new computational tools and models for toxicology and pharmacology. These computational tools hold tremendous promise for advancing applied and basic science, from streamlining drug efficacy and safety testing, to increasing the efficiency and effectiveness of risk assessment for environmental chemicals. Computational Toxicology was conceived to provide both experienced and new biomedical and quantitative scientists with essential background, context, examples, useful tips, and an overview of current developments in the field. This two-volume set serves as a resource to help introduce and guide readers in the development and practice of these tools to solve problems and perform analyses in this area.

Divided into six sections, Volume II covers a wide array of methodologies and topics. The volume begins by exploring the critical area of predicting toxicological and pharmacological endpoints, as well as approaches used in the analysis of gene, signaling, regulatory, and metabolic networks. The next section focuses on diagnostic and prognostic molecular indicators (biomarkers), followed by the application of modeling in the context of government regulatory agencies.  Systems toxicology approaches are also introduced. The volume closes with primers and background on some of the key mathematical and statistical methods covered earlier, as well as a list of other resources. Written in a format consistent with the successful Methods in Molecular Biology™ series where possible, chapters include introductions to their respective topics, lists of the necessary materials and software tools used, methods, and notes on troubleshooting and avoiding known pitfalls.

Authoritative and easily accessible, Computational Toxicology will allow motivated readers to participate in this exciting field and undertake a diversity of realistic problems of interest.

Part 1. Toxicological/Pharmacological Endpoint Prediction


1. Methods for Building QSARs

            James Devillers


2. Accessing and Using Chemical Databases

            Nikolai Nikolov, Todor Pavlov, Jay R. Niemelä, and Ovanes Mekenyan


3. From QSAR to QSIIR: Searching for Enhanced Computational Toxicology Models

            Hao Zhu


4. Mutagenicity, Carcinogenicity and Other Endpoints

            Romualdo Benigni, Chiara Laura Battistelli, Cecilia Bossa, Mauro Colafranceschi, and Olga Tcheremenskaia


5. Classification Models for Safe Drug Molecules

            A.K. Madan, Sanjay Bajaj, and Harish Dureja


6. QSAR and Metabolic Assessment Tools in the Assessment of Genotoxicity

            Andrew P. Worth, Silvia Lapenna, and Rositsa Serafimova


Part II. Biological Network Modeling


7. Gene Expression Networks

            Reuben Thomas and Christopher J. Portier


8. Construction of Cell Type-Specific Logic Models of Signaling Networks Using CellNetOptimizer

            Melody K. Morris, Ioannis Melas, and Julio Saez-Rodriguez


9. Regulatory Networks

            Gilles Bernot, Jean-Paul Comet, and Christine Risso- de Faverney


10. Computational Reconstruction of Metabolic Networks from KEGG

            Tingting Zhou


Part III. Biomarkers


11. Biomarkers

            Harmony Larson, Elena Chan, Sucha Sudarsanam, and Dale E. Johnson


12. Biomarkers: Environmental Public Health Indicators

            Andrey I. Egorov, Dafina Dalbokova, and Michal Kryzanowski


Part IV. Modeling for Regulatory Purposes (Risk and Safety Assessment)


13. Modeling for Regulatory Purposes (Risk and Safety Assessment)

            Hisham El-Masri


14. Developmental Toxicity Prediction

            Raghuraman Venkatapathy and Nina Ching Y. Wang


15. Predictive Computational Toxicology to Support Drug Safety Assessment

            Luis G. Valerio, Jr.


Part V. Integrated Modeling/Systems Toxicology Approaches


16. Developing a Practical Toxicogenomics Data Analysis System Utilizing Open-Source Software

            Takehiro Hirai and Naoki Kiyosawa


17. Systems Toxicology from Genes to Organs

            John Jack, John Wambaugh, and Imran Shah


18. Agent Based Models of Cellular Systems

            Nicola Cannata, Flavio Corradini, Emanuela Merelli, and Luca Tesei


Part VI. Mathematical and Statistical Background


19. Linear Algebra

            Kenneth Kuttler


20. Ordinary Differential Equations

            Jiří Lebl


21. On the Development and Validation of QSAR Models

            Paola Gramatica


22. Principal Components Analysis

            Detlef Groth, Stefanie Hartmann, Sebastian Klie, and Joachim Selbig


23. Partial Least Square Methods: Partial Least Squares Correlation and Partial Least Square Regression

            Hervé Abdi and Lynne J. Williams


24. Maximum Likelihood

            Shuying Yang and Daniela De Angelis


25. Bayesian Inference

            Frédéric Y. Bois

Includes cutting-edge methods and protocols

Provides step-by-step detail essential for reproducible results

Contains key notes and implementation advice from the experts

Date de parution :

Ouvrage de 648 p.

17.8x25.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 174,06 €

Ajouter au panier

Date de parution :

Ouvrage de 648 p.

17.8x25.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 174,06 €

Ajouter au panier

Ces ouvrages sont susceptibles de vous intéresser

En continuant à naviguer, vous autorisez Lavoisier à déposer des cookies à des fins de mesure d'audience. Pour en savoir plus et paramétrer les cookies, rendez-vous sur la page Confidentialité & Sécurité.