Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/comprehensive-treatise-of-electrochemistry-vol-3-electrochemical-energy-conversion-and-storage/bockris/descriptif_1231824
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=1231824

Comprehensive Treatise of Electrochemistry, Softcover reprint of the original 1st ed. 1981 Volume 3: Electrochemical Energy Conversion and Storage

Langue : Anglais

Coordonnateurs : Horsman Peter, Conway Brian E., Yeager E.

Couverture de l’ouvrage Comprehensive Treatise of Electrochemistry
It is now time for a comprehensive treatise to look at the whole field of electrochemistry. The present treatise was conceived in 1974, and the earliest invitations to authors for contributions were made in 1975. The completion of the early volumes has been delayed by various factors. There has been no attempt to make each article emphasize the most recent situation at the expense of an overall statement of the modern view. This treatise is not a collection of articles from Recent Advances in Electrochemistry or Modern Aspects of Electrochemistry. It is an attempt at making a mature statement about the present position in the vast area of what is best looked at as a new interdisciplinary field. Texas A & M University J. O'M. Bockris University of Ottawa B. E. Conway Case Western Reserve University Ernest Yeager Texas A & M University Ralph E. White Preface to Volume 3 Of events which have affected progress in the field of electrochemistry, the decision of NASA to use electrochemical auxiliary power in space vehicles was one of the more important. Another important decision was Ford's announcement of their sodium-sulfur cell for vehicular use in 1969.
1. Electrochemistry and the 21st Century.- 1. Time Scale.- 2. Electrochemistry as “The Other Chemistry”.- 3. On the Nature of Electrochemistry.- 4. The Relationship of Electrochemistry to Other Sciences.- 5. The Currently Expanding World and the Steady State World of the 21st Century.- 6. On the Media of Energy.- 7. Present Electrochemical Industry.- 8. Difficulties of Our Present Society.- 9. A Latter-Day Coal Age.- 10. Near-Future Leads in the Electrochemical Industry.- 11. Biomedical Applications.- 12. The Electrodeposition of Materials from High-Temperature Melts ..- 13. Mineral Processing.- 14. Electrocatalysis.- 15. Material Conservation.- 16. Electro-organic Chemistry.- 17. High-Temperature Electrolytes.- 18. Electrochemistry of Cleaner Environments.- 19. Electrochemistry for a Better World.- 20. Borderline Phenomena.- 21. Lack of Training in Electrochemistry.- References.- 2. Electrochemical Energy Conversion—Principles.- 1. Introduction.- 1.1. Historical Background of Fuel Cells.- 1.2. The Energy Conversion Methods: Advantages and Disadvantages of Fuel Cells Over Other Methods.- 1.3. Types of Fuel Cells and the Most Promising Systems.- 1.4. Role of Electrochemical Energy Conversion in Efficient Utilization of Primary Energy Sources.- 1.5. The Relevant Electrochemical Principles in Electrochemical Energy Conversion.- 2. Thermodynamic Aspects.- 2.1. Reversible Potentials and Open-Circuit Potentials of Fuel Cells.- 2.2. Temperature and Pressure Coefficients of Reversible Potentials.- 2.3. Expressions for Efficiencies of Fuel Cells.- 2.4. Heat Changes under Reversible Conditions.- 3. Electrode Kinetic Aspects.- 3.1. Dependence of Cell Potential and of Differential Cell Resistance on Current.- 3.2. Dependence of Efficiency on Current Density.- 3.3. Dependence of Power on Current Density.- 3.4. Expressions for Maximum Power in Limiting Cases.- 3.5. Heat Generation.- 3.6. The Ideal Electrode Kinetic Parameters for Fuel Cells.- 4. Electrocatalysis.- 4.1. Major Role of Electrocatalysis in Electrochemical Energy Conversion.- 4.2. Hydrogen Oxidation Reaction.- 4.3. Oxygen Reduction Reaction.- 4.4. Electro-organic Oxidation.- 4.5. Sintering of Supported Metal Crystallites.- 5. Porous Gas Diffusion Electrodes.- 5.1. Models.- 5.2. Current-Potential Relations and Current and Potential Distributions.- 5.3. Extent of Utilization of Total Surface Area of Supported Catalysts.- 5.4. Surface Area Measurements.- 5.5. Transient Techniques to Study Porous Electrode Phenomena.- 6. Fuel Cell Systems: Applications, Performance, and Economics.- 6.1. Types of Applications of Fuel Cells.- 6.2. Fuel Cells for Electric and Gas Utility Application.- 6.3. Fuel Cells for Transportation.- 6.4. Fuel Cells for Space Applications.- 6.5. Important Parameters Determining Overall Efficiency and Cost 110 References.- 3. Electrochemical Energy Storage.- 1. Introduction.- 1.1. The Need for Energy Storage.- 1.2. Energy Storage Technologies.- 2. The Theory of Galvanic Cells.- 2.1. Electrode Potentials.- 2.2. The Current-Potential Relation.- 2.3. Complete Galvanic Cells.- 2.4. The Galvanic Cell as Energy Converter.- 3. Electrochemical Storage Systems.- 3.1. Introductory Remarks.- 3.2. Rechargeable Batteries—Conventional Technology.- 3.3. Rechargeable Batteries—Future Systems.- 3.4. Primary Batteries.- 3.5. Fuel Cells.- 3.6. The Limits of Electrochemical Energy Storage (The “Super Battery”).- 4. Summary and Outlook.- 4.1. Industrial-Economical Aspects.- 4.2. Research Objectives.- References.- 4. Primary Batteries—Introduction.- 1. General Features.- 1.1. Early Developments.- 1.2. Applications of Primary Batteries.- 1.3. Basic Principles.- 1.4. Kinetic Aspects of Electrode Reactions.- 1.5. Discharge-Voltage Characteristics.- 2. Classification of Primary Cells and Batteries.- 3. Some Properties of Cathodes, Anodes, and Electrolytes.- 3.1. Cathodes.- 3.2. Anodes.- 3.3. Electrolytes.- 4. Performances of Primary Cells.- 4.1. Theoretical Considerations.- 4.2. Practical Outputs of Primary Cells.- References.- 5. Primary Batteries—Leclanché Systems.- 1. Introduction.- 2. Progress in Performance.- 3. Major Technical Changes.- 4. Chemical Reactions in the Cell.- 5. New Cells and Future Study Areas.- References.- 6. Primary Batteries—Alkaline Manganese Dioxide-Zinc Batteries.- 1. Introduction.- 2. The History of the Alkaline MnO2-Zinc Cell.- 3. Electrochemistry of the Alkaline MnO2-Zinc System.- 4. Primary Alkaline MnO2-Zinc Cells.- 4.1. Cell Designs.- 4.2. Performance Data.- 4.3. Physical Characteristics.- 5. Secondary Alkaline MnO2-Zinc Cells.- References.- 7. Primary Batteries—Sealed Mercurial Cathode Dry Cells.- 1. Introduction.- 2. Cell Structures.- 3. Cell Discharge Characteristics.- 4. Internal Resistance of the Zn-HgO Cell during Discharge.- 5. Mercury Voltage Reference Cell.- 6. Rechargeable HgO Cells.- 7. Zinc Mercuric Dioxysulfate Cell.- 8. Cell Structures for Zinc-Mercuric Dioxysulfate Cells.- Suggested Reading.- 8. Primary Batteries—Lithium Batteries.- 1. Introduction.- 2. Solid Cathode Cells.- 2.1. Electrolyte Solution Considerations.- 2.2. Electrode and Cell Constructions.- 2.3. Specific Systems.- 3. Liquid Cathode Cells.- 3.1. Electrolyte Solution Properties.- 3.2. Discharge Data on Liquid Cathode Cells.- 3.3. Anode Delay Phenomena.- 3.4. Safety Considerations.- 4. Summary and Future Possibilities.- References.- 9. Primary Batteries—Solid Electrolytes.- 1. Introduction.- 2. Conduction Mechanisms in Solid Electrolytes.- 2.1. Ionic Defects in Crystals.- 2.2. Determination of Conduction Mechanism.- 2.3. Conductivity in Crystals Containing Excess Lattice Sites.- 2.4. Electronic Conductivity.- 3. Interface Effects in Solid Electrolyte Cells.- 4. Silver-Ion-Conducting Electrolyte Batteries.- 5. Lithium Iodide Electrolyte Batteries.- 6. Beta-Alumina Electrolyte Batteries.- Selected Reading.- References.- 10. Secondary Batteries—Introduction.- 1. Classification, General Features, and Intercomparisons.- 1.1. Introduction.- 1.2. Battery Features.- 1.3. Battery Applications.- 1.4. Characteristics and Classification of Secondary Batteries.- 1.5. Other Intercomparisons.- 2. New Ambient Temperature Batteries.- 2.1. The Zinc-Nickel Oxide Battery.- 2.2. The Zinc-Manganese Dioxide Battery.- 2.3. The Zinc-Chlorine Battery.- 2.4. The Zinc-Bromine Battery.- 2.5. The Zinc-Air Battery.- 2.6. The Iron-Air Battery.- 2.7. The Hydrogen-Nickel Oxide Battery.- 2.8. The Hydrogen-Silver Oxide Battery.- 2.9. The Hydrogen-Oxygen Battery.- 2.10. The Hydrogen-Halogen Battery.- 2.11. The Redox Battery.- 2.12. The Lithium-Organic Electrolyte Battery.- References.- 11. Secondary Batteries—New Batteries: High Temperature.- 1. Introduction.- 2. Cells with Solid Electrolytes.- 2.1. The Sodium-Beta-Alumina-Sulfur Cell.- 2.2. The Sodium-Sodium-Glass-Sulfur Cell.- 2.3. The Sodium-Beta-Alumina-Antimony Trichloride Cell.- 2.4. The Sodium-Beta-Alumina-Sulfur Chloride Cell.- 3. Cells with Molten-Salt Electrolytes.- 3.1. The Lithium-Aluminum-Lithium Chloride-Potassium Chloride-Iron Monosulfide Cell.- 3.2. The Lithium-Silicon-Lithium Chloride-Potassium Chloride-Iron Disulfide Cell.- 3.3. The Calcium-Silicon-Molten Halide-Iron Disulfide Cell .....- 4. Conclusions.- References.- 12. Secondary Batteries—Lead-Acid Batteries.- 1. History.- 2. General Theory.- 2.1. The Basic Electrochemical Reactions.- 2.2. Discharge Performance.- 2.3. Charging Performance.- 3. The Actual Appearance of Lead-Acid Batteries.- 3.1. Electrode Designs.- 3.2. Design of Cells and Batteries.- Selected Reading.- 13. Secondary Batteries—Nickel-Cadmium Battery.- 1. Introduction.- 2. Thermodynamics and Kinetics.- 3. Materials, Electrodes, and Cells.- 3.1. Materials.- 3.2. Electrode Types.- 3.3. Cell Types.- 4. Technical Performance.- 4.1. Charge-Discharge Characteristic.- 4.2. Charge Retention.- 4.3. Cycle Life.- 4.4. Maintenance.- 4.5. Energy Density and Efficiency.- 5. Application.- References.- 14. Secondary Batteries—Silver-Zinc Battery.- 1. Introduction.- 2. Thermodynamics and Kinetics.- 3. Electrodes and Cells.- 3.1. Electrodes.- 3.2. Cell Types.- 4. Technical Performance.- 4.1. Charge-Discharge Characteristic.- 4.2. Charge Retention.- 4.3. Cycle Life.- 4.4. Maintenance.- 4.5. Energy Density and Efficiency.- 5. Application.- References.- 15. Electrochemical Power for Transportation.- 1. Introduction.- 1.1. Historical Background.- 1.2. Modern Transportation Needs.- 1.3. Environmental and Energy Utilization Issues.- 2. Electric Transportation Vehicles.- 2.1. Automobiles.- 2.2. Commercial Electric Vehicles.- 3. Electrochemical Power Source Requirements.- 3.1. Vehicle Propulsion Power Calculations.- 3.2. Battery Power Requirements.- 3.3. Battery Energy Requirements.- 3.4. Durability and Cost Requirements.- 4. Identification of Candidate Power Sources for Electric Vehicles.- 4.1. Battery Performance.- 4.2. Battery Durability.- 4.3. Battery Cost.- 4.4. Fuel Cells.- 5. Electrochemical Power Source Technology.- 5.1. Ambient Temperature Batteries.- 5.2. High-Temperature Batteries.- 5.3. Fuel Cells.- 6. Summary and Concluding Remarks.- References.- 16. A Hydrogen Economy.- 1. History.- 2. Hydrogen Economy and the Time Scale.- 3. Three Possible Energy Futures during the Coming Century.- 3.1. Coal.- 3.2. Nuclear Hydrogen.- 3.3. Coal-Nuclear Future.- 4. A Solar-Hydrogen Economy.- 5. The Necessity of Beginning the Development of a Hydrogen Economy Several Decades before the Ending of the Fossil Fuel Supply.- 6. The Relationship of Hydrogen to Coal.- 7. The Method of Obtaining Hydrogen on a Massive Scale.- 7.1. Hydrogen from Coal.- 7.2. Biomass.- 7.3. Hydroelectric Plants and the Electrolysis of Water.- 7.4. Hydrogen from Wind Power.- 7.5. Hydrogen from the Kinetic Energy of Natural Streams of Water in the Earth.- 8. The Manufacture of Hydrogen from Solar Energy.- 9. Methods of Decomposing Water.- 10. Electrochemical Decomposition of Water.- 10.1. Classical Electrolyzers.- 10.2. Modern Electrolyzers.- 10.3. Electrolysis of Thermal Systems.- 11. Decomposition of Water by Light.- 12. Hydrogen at High Temperatures.- 13. The Cost Aspect of the Production of Hydrogen.- 13.1. Time Scale.- 13.2. Cost and Price.- 13.3. Large- and Small-Scale Prices.- 13.4. The Cost of Electrochemical Processes in the Production of Hydrogen.- 13.5. The Production of Hydrogen from Coal.- 14. Applications of a Hydrogen Economy.- 14.1. Transmission.- 14.2. Transduction.- 15. Storage of Energy.- 15.1. Reservoirs.- 15.2. Liquefaction.- 15.3. Alloys.- 16. Safety Aspects of Hydrogen as a Fuel.- 16.1. Hydrogen in Transport and Housing.- 16.2. Industry.- 16.3. Pollutional Aspects.- 17. The Hydrogen Economy as the Cheapest Economy.- 18. Electrochemical Technology from Hydrogen Economy.- 18.1. Transportation.- 18.2. Industry.- References.

Date de parution :

Ouvrage de 540 p.

17.8x25.4 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

105,49 €

Ajouter au panier