Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/catalysis-in-c1-chemistry/keim/descriptif_2424026
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2424026

Catalysis in C1 Chemistry, Softcover reprint of the original 1st ed. 1983 Catalysis by Metal Complexes Series, Vol. 4

Langue : Anglais

Coordonnateur : Keim W.

Couverture de l’ouvrage Catalysis in C1 Chemistry
Continuously increasing oil prices, a dwindling supply of petroleum, and the existence of extensive reserves of biomass, especially of coal, have given rise to a growing interest in generating CO/H from these sources. Catalytic reactions can 2 convert CO/H mixtures to useful hydrocarbons or hydrocarbon intermediates. 2 There is little doubt that petroleum will remain the backbone of the organic chemical industry for many years to come, yet there is great opportunity for CO as an alternative feedstock at times when it is needed. The loosely defined body of chemistry and technology contained in these areas of development has become known as C 1 chemistry, embracing many C 1 building blocks such as CH , CO/H , CO, CH OH, CO and HCN; still emphasis 4 2 3 2 rests on carbon monoxide. Academic research laboratories, oil and chemical companies are in the vanguard of C 1 chemistry. The Japanese Ministry of International Trade and Industry is sponsoring a seven-year program of 14 major chemical companies in C 1 chemistry aimed at developing new technology for making basic chemicals from CO and H2 . It is likely that C 1 chemistry will develop slowly but persistently and the future holds great potential.
Homogeneous Carbon Monoxide Hydrogenation.- 1. Stoichiometric CO Reduction (Model Reactions).- 1.1. CO Coordination.- 1.2. CO Activation (Scission and CH Bond Formation).- 1.2.1. CO Activation via Formyl Complexes.- 1.2.2. CO Activation via Hydroxymethyl, Hydroxymethylene Intermediates.- 1.2.3. CO Activation via Carbide, Carbyne, Carbene Intermediates.- 1.3. Formation of C1+ Species (Growth Products).- 1.3.1. Growth by Metal-C-C Bond Formation.- 1.3.2. Growth by Metal-O-C Bond Formation.- 1.3.3. Growth by Aldehydes as Intermediates.- 2. Catalytic Homogeneous Reduction of Carbon Monoxide.- 2.1. Reduction of CO with Reducing Agents Other than Molecular Hydrogen.- 2.2. Direct Reduction of CO with Hydrogen.- References.- FischerTropsch Synthesis.- 1. Introduction.- 2. Historic Developments in Heterogeneous Carbon Monoxide Hydrogenation.- 3. Technical Realization of the Fischer-Tropsch Synthesis.- 3.1. Types of Industrial Reactors.- 3.2. Integrated Structures of Production Plants.- 4. Basic Features of the Fischer-Tropsch Reaction.- 4.1. Stoichiometry.- 4.2. Thermodynamics.- 4.3. Molecular Weight Distribution of Products.- 4.4. Catalysts.- 4.4.1. Catalyst Metals.- 4.4.2. Promoters.- 4.4.3. Supports.- 4.4.4. Poisons.- 4.4.5. Preparation, Activation and Performance of Catalysts.- 4.5. Surface Species.- 5. Product Selectivity Control.- 5.1. Control of Molecular Weight Distribution.- 5.2. Selective Manufacture of Olefins.- 5.3. Selective Manufacture of Alcohols.- 6. Mechanistic Considerations.- 6.1. The Carbide Mechanism.- 6.2. The Hydroxycarbene Mechanism.- 6.3. Carbon Monoxide Insertion Mechanisms.- 6.4. Evaluation of the Proposed Mechanisms.- 7. Conclusions.- References.- Methanol Building Block for Chemicals.- 1. Mechanism of CO Reduction to Methanol.- 2. Future Use of Methanol.- 2.1. Methanol: Raw Material for the Chemical Industry.- 2.1.1. Base Chemicals from Methanol.- 2.1.1.1. Olefins and aromatics.- 2.1.1.2. Generation of pure hydrogen.- 2.1.1.3. Generation of pure CO.- 2.1.1.4. Synthesis of styrene.- 2.1.2. Fine Chemicals from Methanol.- 2.1.2.1. Acetic anhydride.- 2.1.2.2. Vinylacetate.- 2.1.2.3. Ethylene glycol.- 2.1.2.4. Methyl methacrylate.- 2.1.2.5. Methyl formate.- References.- The Homologation of Methanol.- 1. Introduction.- 1.1. Principle of the Homologation Reaction.- 1.2. Potential Use of Methanol Homologation.- 2. Cobalt-Catalyzed Methanol Homologation.- 2.1. Historic Developments and Recent Progress.- 2.2. Parameters Controlling the Homologation Reaction.- 2.2.1. Influence of Catalyst Composition.- 2.2.1.1. Nature of the cobalt compound.- 2.2.1.2. Promoters.- 2.2.1.3. Ligands.- 2.2.1.4. Cometals as hydrogenation catalysts.- 2.2.2. Influence of Reaction Conditions.- 2.2.2.1. Solvents.- 2.2.2.2. CO/H2 ratio.- 2.2.2.3. Syngas pressure.- 2.2.2.4. Reaction temperature.- 2.2.2.5 Reaction time.- 2.3. Possible Reaction Mechanisms.- 2.3.1. Nonpromoted Cobalt Catalysts.- 2.3.2. Iodine-Promoted Cobalt Catalysts.- 2.3.3. Hydrogenation of Acetaldehyde to Ethanol.- 2.3.4. Side-product Formation.- 3. Other Catalyst Metals.- 3.1. Iron Catalysts.- 3.2. Ruthenium Catalysts.- 3.3. Rhodium Catalysts.- 4. Conclusions.- References.- Hydroformylation and Carbonylation Reactions.- 1. Hydroformylation and Carbonylation of Unsaturated Organic Substrates.- 1.1. Introduction.- 1.2. Reppe-Type Chemistry.- 1.2.1. Alkyne Carbonylation.- 1.2.2. Alkene Carbonylation.- 1.3. The Hydroformylation Reaction.- 1.3.1. Unmodified Cobalt Carbonyl Systems.- 1.3.2. Phosphine-Modified Cobalt Carbonyl Systems.- 1.3.3. Rhodium Catalysts.- 1.4. General Mechanistic Implications.- 1.5. Carbonylation in Acidic Conditions.- 2. Carbonylation Under Oxidative Conditions.- 2.1. Introduction.- 2.2. The Synthesis of Oxalates.- 2.3. The Synthesis of Acrylates and Related Derivatives.- 2.4. The Synthesis of Carbonates.- References.- Activation of Carbon Dioxide via Coordination to Transition Metal Complexes.- 1. Introduction.- 2. Insertion of Carbon Dioxide into Transition Metal Complexes.- 2.1. Insertion into M-C Bonds.- 2.2. Insertion into M-H Bonds.- 2.3. Insertion into M-O Bonds.- 2.4. Insertion into M-N Bonds.- 3. Transition Metal-Catalyzed Syntheses Involving Carbon Dioxide.- 3.1. Reactions of CO2 with Hydrogen and Further Reaction Components.- 3.2. Reactions of CO2 with Unsaturated Hydrocarbons.- 3.2.1. Alkynes.- 3.2.2. Alkenes.- 3.2.3. Dienes.- 3.2.4. Methylenecyclopropanes.- 3.3. Reactions of CO2 with Strained Heterocycles.- 4. Deoxygenation of CO2.- 5. Dimerization of CO2.- 6. Carbon Dioxide as a Cocatalyst in Homogeneous Catalysis.- 6.1. Dimerization.- 6.2. Telomerization.- 6.3. Metathesis.- 6.4. Hydroformylation.- 6.5. Polymerization.- 7. Conclusions.- 8. Glossary of Nonstandard Abbreviations.- References.- Hydrocyanation.- 1. Introduction.- 1.1. Application of HCN and its Derivatives.- 1.2. Preparation of HCN.- 1.3. Properties of HCN.- 1.4. Coordination Modes of HCN.- 2. Reaction of HCN with Multiple Bonds.- 2.1. Hydrocyanation of Unsaturated Hydrocarbons.- 2.1.1. Hydrocyanation of Acetylene.- 2.1.2. Hydrocyanation of Olefins.- 2.1.2.1. Activation of HCN by cuprous salts.- 2.1.2.2. Selectivity of hydrocyanation reactions.- 2.1.2.3. Oxycyanation of olefins.- 2.1.2.4. Reaction with 1.4-butenediol.- 2.1.2.5. Reaction of cyanogen with hydrocarbons.- 2.1.3. Isonitrile Synthesis by Hydrocyanation.- 2.2. Hydrocyanation of Functionalized Olefins.- 2.3. Hydrocyanation of C = 0 and C=N Double Bonds.- 3. Applications of HCN in Organic Chemistry Other than Addition to Multiple Bonds.- 3.1. Cyanogen Chemistry.- 3.2. Oxamide Synthesis.- 3.3. Cyclotrimerization of HCN and of its Derivatives.- 3.4. Polymerization of HCN.- 3.5. Formamide Synthesis.- 3.6. Oxidation and Hydrogenation of HCN.- 4. Physiological Properties of HCN and Safety.- References.- Methane.- 1. Methane.- 1.1. Industrial and Synthetic Applications of Methane.- 1.1.1. Synthesis Gas.- 1.1.2. Halogenation of Methane.- 1.1.3. Hydrocyanic Acid Production.- 1.1.4. Acetylene Production.- 1.1.5. Particular Reactions.- 1.1.5.1. Nitriles synthesis.- 1.1.5.2. Direct synthesis of methanol and formaldehyde.- 1.1.5.3. Carboxylation of methane.- 1.1.5.4. Formation of CS2.- 1.1.5.5. Other reactions.- 1.2. Activation of Methane.- 1.2.1. Activation of Methane by Soluble Metal Complexes.- 1.2.2. Activation of Methane by Superacids.- 1.3. Methane in Nature.- 2. Alkanes.- 2.1. Activation of Alkanes by Metal Complexes.- 2.2. Activation of Alkanes on Metal Surfaces.- 2.3. Activation of Alkanes by Metal Ions Through Oxidoreduction Processes.- 2.4. Metallo Enzymes Activation of Alkanes.- References.- Carbenes.- 0. Introduction.- 1. The Structure of Carbenes.- 2. Reactivity of Carbenes.- 3. Regioselectivity of Carbenes.- 4. The Relative Stability of Spin States.- 5. The Generation of Carbenes.- 6. Carbene Metal Complexes.- 7. The Structure of Carbenoids.- 8. Carbenes in Fine-Chemical Synthesis.- 8.1. Cycloaddition of Carbenes.- 8.2. The Insertion of Carbenes.- 8.3. Ring Enlargement Reactions and Ring Opening Processes.- 8.4 Carbene Rearrangements.- 8.5. The 1, 3-dipolar Addition.- 9. Carbenoids in Fine-Chemicals Synthesis.- 10. Mechanisms of Copper-Catalyzed Carbene Reactions.- 11. Catalysis by Metals Other than Copper.- 12. Synthetic Applications of Group VIII Transition Metal Complexes.- 13. Carbenoids in Industrial Process.- 13.1. Olefin Metathesis.- 13.2. Hydrocarbon Acitivation.- 13.2.1. Hydrogen Deuterium Exchange in Methane.- 13.2.2. Hydrogenolysis of Alkanes.- 13.2.3. Isomerization of Alkanes.- 13.3. Carbenes in Fischer-Tropsch Reactions.- 13.3.1. Methylene Carbenoids.- 13.3.2. Alkylidene Carbenoids.- 13.3.3. Oxycarbene Complexes.- 13.3.4. Hydroxycarbenes.- References.

Date de parution :

Ouvrage de 314 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

210,99 €

Ajouter au panier