Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/advances-in-scanning-probe-microscopy/sakurai/descriptif_2863115
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=2863115

Advances in Scanning Probe Microscopy, Softcover reprint of the original 1st ed. 2000 Advances in Materials Research Series, Vol. 2

Langue : Anglais

Coordonnateurs : Sakurai T., Watanabe Y.

Couverture de l’ouvrage Advances in Scanning Probe Microscopy
There have been many books published on scanning tunneling microscopy (STM), atomic force microscopy (AFM) and related subjects since Dr. Cerd Binnig and Dr. Heinrich Rohrer invented STM in 1982 and AFM in 1986 at IBM Research Center in Zurich, Switzerland. These two techniques, STM and AFM, now form the core of what has come to be called the 'scanning probe microscopy (SPM)' family. SPM is not just the most powerful microscope for scientists to image atoms on surfaces, but is also becoming an indispensable tool for manipulating atoms and molecules to construct man-made materials and devices. Its impact has been felt in various fields, from surface physics and chemistry to nano-mechanics, nano-electronics and medical science. Its influence will surely extend further as the years go by, beyond the reach of our present imagination, and new research applications will continue to emerge. This book, therefore, is not intended to be a comprehensive review or textbook on SPM. Its aim is to cover only a selected part of the active re­ search fields of SPM and related topics in which I have been directly involved over the years. These include the basic principles of STM and AFM, and their applications to fullerene film growth, SiC surface reconstructions, MBE (molecular beam epitaxy) growth of CaAs, atomic scale manipulation of Si surfaces and meso scopic work function.
1 Theory of Scanning Probe Microscopy.- 1.1 Introduction.- 1.2 Scanning Tunneling Microscopy.- 1.3 Frictional Force Microscopy.- 1.4 Dynamic-Mode Atomic Force Microscopy.- 1.5 Non-Contact Mode Atomic Force Microscopy.- 1.6 Conclusion.- References.- 2 The Theoretical Basis of Scanning Tunneling Microscopy for Semiconductors — First-Principles Electronic Structure Theory for Semiconductor Surfaces.- 2.1 Introduction.- 2.2 Computational Methods.- 2.3 Surface Structures.- 2.4 Surface Dynamics.- References.- 3 Atomic Structure of 6H-SiC (0001) and (000$$\bar{1}$$).- 3.1 Introduction.- 3.2 Surface Preparation.- 3.3 Surface Structure of 6H-SiC (0001) and (000$$\bar{1}$$).- 3.4 Surface Phonons of 6H-SiC (0001).- 3.5 Effect of Surface Polarity for Gallium Adsorption onto 6H-SiC Surfaces.- 3.6 Conclusions.- References.- 4 Application of Atom Manipulation for Fabricating Nanoscale and Atomic-Scale Structures on Si Surfaces.- 4.1 Introduction.- 4.2 Experimental Aspects.- 4.3 Property Changes in the Si(111)?7x7 Surface.- 4.4 Properties of Dangling Bonds on the Si(100)?2x1?H Surface.- 4.5 Interaction of Adsorbates with Dangling Bonds on Si(100)?2x1?H Surfaces and Atomic Wire Fabrication.- 4.6 Conclusion.- References.- 5 Theoretical Insights into Fullerenes Adsorbed on Surfaces: Comparison with STM Studies.- 5.1 Introduction.- 5.2 Fullerene Research Background.- 5.3 Universal Features of C60 and C70 STM Images.- 5.4 Dipole Field Caused by Charge Transfer.- 5.5 Photo-Induced Excited States.- 5.6 Conclusion.- Appendix: All-Electron Mixed Basis Approach.- References.- 6 Apparent Barrier Height and Barrier-Height Imaging of Surfaces.- 6.1 Introduction.- 6.2 Properties of Barrier Height.- 6.3 Measurements of Barrier Height.- 6.4 Barrier-Height Imaging.- 6.5 Applications of BH Imaging.- References.- 7 Mesoscopic Work Function Measurement by Scanning Tunneling Microscopy.- 7.1 Introduction.- 7.2 Work Function.- 7.3 Experimental Techniques.- 7.4 Results.- 7.5 Conclusion.- References.- 8 Scanning Tunneling Microscopy of III–V Compound Semiconductor (001) Surfaces.- 8.1 Introduction.- 8.2 Semiconductor Surface Reconstruction.- 8.3 GaAs(001) As-Rich Surface.- 8.4 GaAs(001) Ga-Rich Surface.- 8.5 Other Arsenide (001) Surfaces.- 8.6 Phosphide, Antimonide and Nitride (001) Surfaces.- 8.7 Conclusions.- References.- 9 Adsorption of Fullerenes on Semiconductor and Metal Surfaces Investigated by Field-Ion Scanning Tunneling Microscopy.- 9.1 Introduction.- 9.2 Experiment.- 9.3 Results and Discussions on Semiconductor Substrates.- 9.4 Results and Discussions on Metal Substrates.- 9.5 Conclusions.- References.

Provides introduction to selected theoretical and experimental aspects of particular current interest in this rapidly developing field

Of interest to newcomers and established workers alike

Date de parution :

Ouvrage de 343 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

Prix indicatif 105,49 €

Ajouter au panier

Date de parution :

Ouvrage de 343 p.

15.5x23.5 cm

Sous réserve de disponibilité chez l'éditeur.

Prix indicatif 105,49 €

Ajouter au panier

Thème d’Advances in Scanning Probe Microscopy :