Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/astronomie/to-mars-and-beyond-fast/descriptif_3629577
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3629577

To Mars and Beyond, Fast!, 1st ed. 2017 How Plasma Propulsion Will Revolutionize Space Exploration Space Exploration Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage To Mars and Beyond, Fast!
As advanced in-space propulsion moves from science fiction to reality, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR® engine, is a leading contender for making 'Mars in a month' a possibility. A paradigm shift in space transportation, this book is an in-depth and compelling story co-written by its inventor. It traces the riveting history of the development of the VASIMR® engine. This landmark technology is grounded in concepts of advanced plasma physics. It cross-pollinates ideas and disciplines to offer a new, practical, and sustainable solution for in-space transportation beyond low Earth orbit in the decades to come. Invented by the co-holder of the world?s spaceflight record, astronaut Franklin Chang Díaz, the VASIMR®  engine is developed by Ad Astra Rocket Company in its Texas facilities with NASA as part of the NextSTEP VASIMR® partnership. With adequate funding, the first spaceflight of the VASIMR® engine is imminent. Plasma rockets feature exhaust velocities far above those achievable by conventional chemical rockets. The VASIMR® engine is the most advanced high-power plasma propulsion system operating in the world today and it may place long, fast interplanetary journeys withinour reach in the near future. 
1 The Nautilus Paradigm.- 2 A Fast Track to Deep Space.- 3 Early VASIMR Development.- 4 Probing the Physics.- 5 The Breakthroughs.- 6 A New Company is Born.- 7 The VX-200 and the Path to Commercialization.- 8 A Bridge to the Future.- 9 Mission Threats and Potential Solutions.- 10 The VASIMR Nuclear-Electric Mission Architecture.- Index.


Franklin Chang Díaz was born April 5, 1950, in San José, Costa Rica, to the late Mr. Ramón A. Chang Morales and Mrs. María Eugenia Díaz Romero. At the age of 18, having completed his secondary education at Colegio de La Salle in Costa Rica, he left his family for the United States to pursue his dream of becoming a rocket scientist and an astronaut.

Arriving in Hartford Connecticut in the fall of 1968 with $50 dollars in his pocket and speaking no English, he stayed with relatives, enrolled at Hartford Public High School where he learned English and graduated again in the spring of 1969. That year he also earned a scholarship to the University of Connecticut.

While his formal college training led him to a BS in Mechanical Engineering, his four years as a student research assistant at the university’s physics laboratories provided him with his early skills as an experimental physicist. Engineering and physics were his passion but also the correct skill mix for hischosen career in space. However, two important events affected his path after graduation: the early cancellation of the Apollo Moon program, which left thousands of space engineers out of work, eliminating opportunities in that field and, the global energy crisis, resulting from the I973 oil embargo by the Organization of Petroleum Exporting Countries (OPEC). The latter provided a boost to new research in energy.

Confident that things would ultimately change at NASA, he entered graduate school at MIT in the field of plasma physics and controlled fusion. His research involved him heavily in the US Controlled Thermonuclear Fusion Program, managed then by the US Atomic Energy Commission. His doctoral thesis studied the conceptual design and operation of future reactors, capable of harnessing fusion power. He received his doctorate degree in 1977 and in that same year, he became a US citizen.

After MIT, Dr. Chang Díaz joined the technical staff of the Charles StarkDraper Laboratory in Cam
Describes in layman terms the full scope of the development of the VASIMR® plasma propulsion technology and the key milestones in its development Chronicles the challenges encountered in developing plasma propulsion technology Explains the variety of applications of the VASIMR®, including asteroid deflection, lunar transport, station-keeping, space debris, and interplanetary missions Includes supplementary material: sn.pub/extras