Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/astronomie/characterizing-space-plasmas/descriptif_3827861
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3827861

Characterizing Space Plasmas, Softcover reprint of the original 1st ed. 2018 A Data Driven Approach Astronomy and Astrophysics Library Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Characterizing Space Plasmas

This didactic book uses a data-driven approach to connect measurements made by plasma instruments to the real world. This approach makes full use of the instruments? capability and examines the data at the most detailed level an experiment can provide. Students using this approach will learn what instruments can measure, and working with real-world data will pave their way to models consistent with these observations. 

While conceived as a teaching tool, the book contains a considerable amount of new information. It emphasizes recent results, such as particle measurements made from the Cluster ion experiment, explores the consequences of new discoveries, and evaluates new trends or techniques in the field. At the same time, the author ensures that the physical concepts used to interpret the data are general and widely applicable. The topics included help readers understand basic problems fundamental to space plasma physics. Some are appearing for the first time in a space physics textbook. Others present different perspectives and interpretations of old problems and models that were previously considered incontestable. This book is essential reading for graduate students in space plasma physics, and a useful reference for the broader astrophysics community. 

1 Basic Equations and Concepts 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Statistical Equations . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Electric and Magnetic Field in Space . . . . . . . . . . . . . . . . 7
1.5 Transformation of E and B Fields . . . . . . . . . . . . . . . . . 11
1.6 Macroscopic Equations . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Plasma Measurements . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 Examples of Plasma Distributions . . . . . . . . . . . . . . . . . 31
1.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Charged Particle Acceleration 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Motion in Uniform E and B Field . . . . . . . . . . . . . . . . . 40
2.3 E ⇥ B Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Motion in Inhomogeneous Magnetic Field . . . . . . . . . . . . . 57
2.5 Other Particle Acceleration Mechanisms . . . . . . . . . . . . . . 63
2.6 Waves and Wave-Particle Interaction . . . . . . . . . . . . . . . . 68
2.7 Cyclotron Resonance Theory . . . . . . . . . . . . . . . . . . . . 72
2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 78
3 Escaping Solar Particles 81
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Observations of Solar Wind Ions . . . . . . . . . . . . . . . . . . 83
3.3 Observations of Solar Wind Electrons . . . . . . . . . . . . . . . 91
3.4 Solar Wind Models . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5 Kinetic Models of the SW . . . . . . . . . . . . . . . . . . . . . . 99
3.6 Heuristic Interpretation of the Solar Wind . . . . . . . . . . . . . 104
3.7 Electrostatic Solitary Waves . . . . . . . . . . . . . . . . . . . . . 108
3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 110
4 Collisionless Shocks 117
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2 Observations of Earth’s Bow Shock . . . . . . . . . . . . . . . . . 119
4.3 Entropy Across Earth’s Bow Shock . . . . . . . . . . . . . . . . . 125
4.4 ICME Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5 Nonlinear Structures Upstream of Bow Shock . . . . . . . . . . . 140
4.6 Growth of Nonlinear Structure . . . . . . . . . . . . . . . . . . . 158
4.7 Acceleration of Particles at the Bow Shock . . . . . . . . . . . . 161
4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 165
5 Current Sheets and Boundaries 183
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.2 Magnetic Reconnection on Earth . . . . . . . . . . . . . . . . . . 184
5.3 SW Entry into Magnetosphere through Cusps . . . . . . . . . . . 191
5.4 Particle Motions in Magnetic Neutral Regions . . . . . . . . . . . 198
5.5 Kinetic Models of Current Sheets . . . . . . . . . . . . . . . . . . 204
5.6 Kinetic Equations for Boundaries . . . . . . . . . . . . . . . . . . 208
5.7 Tearing Mode Instability . . . . . . . . . . . . . . . . . . . . . . . 214
5.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 218
6 Current and Electric Field 225
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.2 Observations of Electron and Ion Beams . . . . . . . . . . . . . . 226
6.3 Motion Parallel to E and B Fields . . . . . . . . . . . . . . . . . 231
6.4 Electric Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.5 A Model of Double Layer . . . . . . . . . . . . . . . . . . . . . . 246
6.6 Currents in the Magnetosphere and Ionosphere . . . . . . . . . . 251
6.7 Ring Current in Magnetospheres . . . . . . . . . . . . . . . . . . 256
6.8 Magnetosphere-Ionosphere Coupling . . . . . . . . . . . . . . . . 264
6.9 Auroral Kilometric Radiation . . . . . . . . . . . . . . . . . . . . 272
6.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 275
7 Topics for Further Studies 281
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.2 Large-scale Current Structures . . . . . . . . . . . . . . . . . . . 281
7.3 Heating Space Plasmas . . . . . . . . . . . . . . . . . . . . . . . . 284
7.4 Boltzmann Collisional Term (@f/@t)c . . . . . . . . . . . . . . . 286
7.5 Runaway Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . 292
7.6 Collective Interactions . . . . . . . . . . . . . . . . . . . . . . . . 295
Dr. George Parks is a research physicist in the Space Sciences Laboratory at the University of California, Berkeley. He has previously held numerous other roles, including a professorship in the geophysics group at the University of Washington and a visiting scientist position at NASA. He has over 350 publications in refereed journals on topics such as auroral X-ray observations, plasmas in the radiation belt, plasma sheets, bow shocks, wave-particle interactions, and non-linear plasma physics. 

Maximizes reader insight into real-world observations and data through detailed discussions

Presents critiques of space plasma models using both theory and cutting-edge observational data

Provides step-by-step derivations of the equations presented, along with enlightening mathematical and historical asides

Challenges the reader with critical questions relevant to the presented material

Date de parution :

Ouvrage de 332 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

68,56 €

Ajouter au panier

Date de parution :

Ouvrage de 332 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

89,66 €

Ajouter au panier