Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/astronomie/astroparticle-physics-and-cosmology/descriptif_4399653
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4399653

Astroparticle Physics and Cosmology, 1st ed. 2020 Perspectives in the Multimessenger Era Lecture Notes in Physics Series, Vol. 975

Langue : Anglais

Auteur :

Couverture de l’ouvrage Astroparticle Physics and Cosmology

Cosmology and astroparticle physics have seen an avalanche of discoveries in the past decade (IceCube - high energy neutrinos, LIGO - gravitational waves, Fermi- gamma-ray telescope, Xenon-1T - dark matter detection, PLANCK- cosmic microwave radiation, EHT picture of black hole, SDSS -galaxy surveys), all of which require a multidisciplinary background for analyzing the phenomena. The arena for testing particle physics models is in the multimessenger astronomical observations and at the same time cosmology now requires a particle physics basis for explaining many phenomena. This book discusses the theoretical tools of particle physics and general relativity which are essential for understanding and correlating diverse astronomical observations.

Preface

1 Effective potential and phase transitions 1
1.1 Coleman-Weinberg one loop effective potential . . . . . . . . . . 1
1.1.1 One-loop effective potential of ¸Á4 theory . . . . . . . . 3
1.1.2 Dimensional regularization . . . . . . . . . . . . . . . . . . 4
1.1.3 Renormalization scheme independence of the effective potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Standard model Higgs potential . . . . . . . . . . . . . . . . . . . . 6
1.3 Higgs vacuumstability . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Effective potential at finite temperature . . . . . . . . . . . . . . . 6
1.5 Phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 GravitationalWaves 9
2.1 Linearised gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Energy loss by gravitational radiation frombinary neutron stars or black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Waveformof gravitational waves from binary mergers . . . . . . 15
2.4 Gravitational waves from phase transitions . . . . . . . . . . . . . 15
2.5 Gravitational waves andMulti-messenger astronomy . . . . . . . 18

3 Black Holes 19
3.0.1 Kerr black hole . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.0.2 Photon orbit around Kerr black holes . . . . . . . . . . . . 19
3.0.3 Massive particle orbits around Kerr black holes . . . . . . 19
3.0.4 Frame dragging and Lens-Thirring precession of gyroscopes 19
3.0.5 Space-time structure of Kerr black hole . . . . . . . . . . . 19
3.0.6 Penrose process . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.0.7 Super-radiance . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 High energy cosmic rays 21
4.1 Sources of high energy cosmic rays . . . . . . . . . . . . . . . . . . 21
4.1.1 High energy positrons from the galaxy . . . . . . . . . . . 21
4.1.2 High energy gamma ray observations . . . . . . . . . . . . 21
4.1.3 Ultra-High energy neutrino observations . . . . . . . . . . 21

5 DarkMatter 23
5.1 Equilibriumdistribution of collision-less particles . . . . . . . . . 23
5.1.1 Detection of dark matter . . . . . . . . . . . . . . . . . . . 25
5.1.2 Interaction of dark matter with standard model particles 25
5.1.3 Higgs portal . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.4 Vector portal . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.5 Axion portlal . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.6 Neutrino portal . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Dark matter signals in high energy photons, positrons and neutrinos observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Effective DM-nucleon interaction operators . . . . . . . . . . . . 26
5.3.1 Direct detection experiments . . . . . . . . . . . . . . . . . 27
5.3.2 Collider searches for dark matter . . . . . . . . . . . . . . 27
5.4 Dark matter at cosmological scales . . . . . . . . . . . . . . . . . . 27
5.5 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Relic density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.1 Relic density of Cold DarkMatter by Freeze-Out . . . . . 33
5.6.2 Cold dark matter relic by Freeze-In . . . . . . . . . . . . . 36
5.7 Relic density of SIMP dark matter . . . . . . . . . . . . . . . . . . 39
5.8 Relic density ofWarmdark matter . . . . . . . . . . . . . . . . . . 39
5.9 Structure formation in cold darkmatter . . . . . . . . . . . . . . . 39
5.10 Structure formation in warmdarkmatter . . . . . . . . . . . . . . 39
5.11 Structure formation in SIMP dark matter . . . . . . . . . . . . . . 39
5.12 Fuzzy dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.13 Primordial black holes as dark matter . . . . . . . . . . . . . . . . 39

6 Axions 43
6.1 The Strong CP problem . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Models of axions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Axion darkmatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Direct detection of axions . . . . . . . . . . . . . . . . . . . . . . . 43

7 Supersymmetry 45
7.1 Lorentz transformations of fields . . . . . . . . . . . . . . . . . . . 45
7.1.1 Weyl, Dirac andMajorana fermions . . . . . . . . . . . . . 46
7.1.2 Dotted and undotted indices . . . . . . . . . . . . . . . . . 48
7.2 Grassmann variables . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 Supersymmetric transformations of fields . . . . . . . . . . . . . 50
7.3.1 Generators of SUSY transformations . . . . . . . . . . . . 52
7.4 Supersymmetry as translations in superspace . . . . . . . . . . . 53
7.5 SUSY invariant Lagrangian . . . . . . . . . . . . . . . . . . . . . . . 58
7.6 SUSY gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.6.1 Abelian SUSY gauge theory . . . . . . . . . . . . . . . . . . 60
7.6.2 Non-abelian SUSY gauge theory . . . . . . . . . . . . . . . 63
7.7 MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.8 Higgs potential inMSSM . . . . . . . . . . . . . . . . . . . . . . . . 67
7.8.1 Gauge boson masses . . . . . . . . . . . . . . . . . . . . . . 70
7.8.2 Higgs masses . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.8.3 Higgs couplings . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.9 Neutralino mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Grand Unified Theories 79
8.1 SU(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 SO(10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Particle physics models of Inflation 81
9.1 Starobinsky model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Supergravity models . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.3 CosmicMicrowave Background . . . . . . . . . . . . . . . . . . . 81
9.4 Constraints of InflationModels from CMB . . . . . . . . . . . . . 81
9.5 Constrains on NeutrinoMass from CMB and LSS . . . . . . . . . 81

Dr. Subhendra Mohanty obtained his Ph.D from University of Wisconsin-Madison and, after a few post-doctoral stints at CERN, ICTP and other institutions, has been at the Physical Research Laboratory (India) where he is currently a Senior Professor. He has also been a Visiting Professor at Universitat Autonoma of Barcelona. Dr. Mohanty has given numerous courses on various aspects of particle physics and cosmology at his home institution and outside, being an early adopter of the genre of Astroparticle Physics. He has published more than hundred research papers with his local and international collaborators and has trained numerous PhD students and young researchers in the field.

Collects in a single concise volume the fundamentals of astroparticle physics, particle physics and cosmology

Presents the current state of research in a pedagogical way

The topics covered are based on new but well established experimental results