Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/environnement/nuclear-reactor-thermal-hydraulics/descriptif_4089690
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4089690

Nuclear Reactor Thermal Hydraulics An Introduction to Nuclear Heat Transfer and Fluid Flow

Langue : Anglais

Auteur :

Couverture de l’ouvrage Nuclear Reactor Thermal Hydraulics

Nuclear Thermal-Hydraulic Systems provides a comprehensive approach to nuclear reactor thermal-hydraulics, reflecting the latest technologies, reactor designs, and safety considerations. The text makes extensive use of color images, internet links, computer graphics, and other innovative techniques to explore nuclear power plant design and operation. Key fluid mechanics, heat transfer, and nuclear engineering concepts are carefully explained, and supported with worked examples, tables, and graphics. Intended for use in one or two semester courses, the text is suitable for both undergraduate and graduate students. A complete Solutions Manual is available for professors adopting the text.

1. Nuclear Power in the World Today 2. The Pressurized Water Reactor 3. The Boiling Water Reactor 4. Fast Reactors, Gas Reactors, and Military Reactors 5. Thermal Energy Production in Nuclear Power Plants 6. The Laws of Thermodynamics 7. Thermodynamic Properties and Equations of State 8. The Nuclear Steam Supply System and Reactor Heat Exchangers 9. Reactor Thermal Cycles 10. The Laws of Nuclear Heat Transfer 11. Heat Removal from Nuclear Fuel Rods 12. Time-Dependent Nuclear Heat Transfer 13. Nuclear Reactor Fluid Mechanics 14. Fluid Statics and Fluid Dynamics 15. The Conservation Equations of Fluid Mechanics 16. Single-Phase Flow in Nuclear Power Plants 17. Laminar and Turbulent Flows with Friction 18. Core and Fuel Assembly Fluid Flow 19. Reactor Coolants, Coolant Pumps, and Power Turbines 20. Fundamentals of Single-Phase Heat Transfer in Nuclear Power Plants 21. Correlations for Single-Phase Nuclear Heat Transfer 22. Natural Convection in Nuclear Power Plants 23. Fundamentals of Two-Phase Flow in Nuclear Power Plants 24. Two-Phase Nuclear Heat Transfer 25. Heat Transfer Correlations for Advanced Two-Phase Nuclear Heat Transfer 26. Core Temperature Fields 27. Nuclear Hot Channel Factors, the Critical Heat Flux, and the DNBR 28. Particle Transport and Entrainment during Reactor Accidents 29. Equilibrium and Non-Equilibrium Flows, Compressible Flows, and Choke Flows 30. Reactor Accidents, DBAs, and LOCAs 31. Flow Oscillations, Density Waves, and Hydrodynamic Instabilities 32. Containment Buildings and Their Function 33. Thermal Design Limits, Operating Limits, and Safety Limits 34. Response of a Containment Building to a Reactor LOCA

Robert E. Masterson (1950-2020) held MS and PhD degrees in nuclear engineering from the Massachusetts Institute of Technology, and he worked for Westinghouse Nuclear Energy Systems. He was an Affiliate Professor of Nuclear Science and Engineering at Virginia Tech University in Blacksburg, Virginia. Dr. Masterson published extensively in the journals of the ANS and had over 20 years of experience in the field of nuclear science and engineering. He had an extensive background in the fields of reactor safety, reactor design and analysis, reactor thermal hydraulics, numerical analysis, reactor physics, reactor dynamics, nuclear medicine, and nuclear particle transport. He was a member of the American Nuclear Society. His first textbook with CRC Press, Nuclear Engineering Fundamentals: A Practical Perspective, was published in 2017.