Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/physique/orbital-mechanics-for-engineering-students/descriptif_4379231
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4379231

Orbital Mechanics for Engineering Students (4th Ed.) Revised Reprint Aerospace Engineering Series

Langue : Anglais

Auteur :

Couverture de l’ouvrage Orbital Mechanics for Engineering Students

Orbital Mechanics for Engineering Students, Fourth Edition, is a key text for students of aerospace engineering. While this latest edition has been updated with new content and included sample problems, it also retains its teach-by-example approach that emphasizes analytical procedures, computer-implemented algorithms, and the most comprehensive support package available, including fully worked solutions, PPT lecture slides, and animations of selected topics. Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work, this book provides all the tools needed to fully understand the subject.

1. Dynamics of Point Masses 2. The Two-Body Problem 3. Orbital Position as a Function of Time 4. Orbits in Three Dimensions 5. Preliminary Orbit Determination 6. Orbital Maneuvers 7. Relative Motion and Rendezvous 8. Interplanetary Trajectories 9. Lunar Trajectories 10. Introduction to Orbital Perturbations 11. Rigid Body Dynamics 12. Spacecraft Attitude Dynamics 13. Rocket Vehicle Dynamics

Appendix A Physical Data B A Road Map C Numerical Integration of the N-Body Equations of Motion D MATLAB Scripts E Gravitational Potential of a Sphere  F Computing the Difference Between Nearly Equal Numbers G Direction Cosine Matrix in Terms of the Unit Quaternion

Undergraduate students in aerospace, astronautical, mechanical engineering, and engineering physics; related professional aerospace and space engineering fields

Professor Curtis is former professor and department chair of Aerospace Engineering at Embry-Riddle Aeronautical University. He is a licensed professional engineer and is the author of two textbooks (Orbital Mechanics 3e, Elsevier 2013, and Fundamentals of Aircraft Structural Analysis, McGraw Hill 1997). His research specialties include continuum mechanics, structures, dynamics, and orbital mechanics.
  • Provides a new chapter on the circular restricted 3-body problem, including low-energy trajectories
  • Presents the latest on interplanetary mission design, including non-Hohmann transfers and lunar missions
  • Includes new and revised examples and sample problems

Ces ouvrages sont susceptibles de vous intéresser